94063

B. Sc. (Hons.) Mathematics 5th Semester Old/New Scheme Examination – February, 2022

METHODS OF APPLIED MATHEMATICS

Paper: BHM-355

Time: Three Hours]

Maximum Marks : 60

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Q. No. 9 (Section-V) is compulsory. All questions carry equal marks.

SECTION - I

1. (a) Find the solution of three dimensional Laplace equation in cylindrical co-ordinates.

P. T. O.

(b) Discuss the heat conduction in a semi-infinite bar.

2. (a) Obtain the solution of wave equation in cylindrical co-ordinates by the methods of separation of variables.

(b) Determine the temperature distribution in the infinite cylinder 0 ≤ l ≤ a, when the initial temperature is Q(l, 0) = f(l) and the surface l = a is maintained at zero temperature.

SECTION - II

- 3. (a) Discuss the wave motion along a semi-infinite string.6
 - (b) Discuss heat conduction in an infinite cylinder. 6
- 4. Obtain the Fourier series solution of the heat equation in case of:
 12
 - (i) Ends of the bar kept at temperature zero.
 - (ii) Temperature in a bar with insulated ends.

94063- -(P-4)(Q-9)(22) (2)

94063-450(P-4)(Q-9)(22)

SECTION - III

- 5. (a) Obtain the Hankel transform of derivatives.
 - (b) State Hankel's transform. Find the zero-order Hankel transform of $\frac{\delta(r)}{r}$.
- 6. (a) Find Fourier sine transform of the function: $f(x) = e^{-3x} + e^{-4x}$
 - b) Solve $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary condition $\frac{\partial u}{\partial x} = 0$, when x = 0, $x = \pi$ and u = f(x), when t = 0, $0 < x < \pi$.

SECTION - IV

- 7. (a) State and prove parallel axis theorem. 6
 - (b) Find M. I. (moment of inertia) of the body about a line whose direction ratio are α , β , γ .
- 8. (a) Prove that principal axis are mutually orthogonal.
 - (b) A square of side a has particle of masses m, 2m, 3m, 4m at its vertices. Find the moments and product of inertia at the centre of square and find the direction of principal axis.6

SECTION - V

- 9. (a) Write down any two operational property of Hankel transform.
 - (b) Find the infinite Fourier sine transform of function f(x) = x.
 - (c) State Laplace equation in spherical polar coordinates.
 - (d) Define the finite Fourier cosine transform. 2
 - (e) Write relation between Fourier and Hankel transform.
 - (f) Define equimomental system. 2